Evaluating The Autonomy Of AI Agents In Multi Stage Decision Making Processes

Main Article Content

Aatish Kumar Dhami
Dr S P Singh

Abstract

This study presents a comprehensive evaluation of the autonomy of AI agents engaged in multi-stage decision-making processes. We introduce a systematic framework that integrates performance metrics, adaptive learning assessments, and error recovery analysis to quantify the degree of independent operation across successive decision stages. By dissecting the iterative decision architecture and identifying critical evaluation parameters, our methodology offers insights into how AI agents adapt to dynamic environments and handle uncertainties. Empirical results demonstrate that robust autonomy evaluation not only enhances decision accuracy but also informs the development of resilient and flexible algorithmic strategies. The findings contribute to advancing the field of autonomous AI, providing a foundation for future research into improving the efficiency and reliability of multi-stage decision-making systems.

Article Details

How to Cite
Dhami, A. K., & Singh, D. S. P. (2025). Evaluating The Autonomy Of AI Agents In Multi Stage Decision Making Processes. Journal of Quantum Science and Technology (JQST), 2(1), Mar(221–243). Retrieved from https://jqst.org/index.php/j/article/view/241
Section
Original Research Articles

References

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.falkordb.com%2Fblog%2Fai-agents-memory-systems%2F&psig=AOvVaw1UpkLxr_R8GjQ6loZZj5AK&ust=1739636183861000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPDg4fjHw4sDFQAAAAAdAAAAABAE

https://www.google.com/url?sa=i&url=https%3A%2F%2Fattri.ai%2Fgenerative-ai-wiki%2Fautonomous-ai-agents&psig=AOvVaw0lgfshzSu-r7ywt7M52BIv&ust=1739636511374000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCNiIoZXJw4sDFQAAAAAdAAAAABAE

• Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

• Simon, H. A. (1981). The Sciences of the Artificial (3rd ed.). Cambridge, MA: MIT Press.

• Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

• Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

• Bojarski, M., Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

• Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

• Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning (pp. 1–16).

• Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd ed.). Pearson.

• Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334–1373.

• Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274.

• Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.

• Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

• Li, Y., Chen, M., & Li, H. (2019). A survey of reinforcement learning techniques for decision-making in autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4465–4476.

• Chen, C., Huang, Y., & Li, X. (2020). Multi-agent reinforcement learning for traffic management in autonomous driving. IEEE Transactions on Vehicular Technology, 69(3), 3121–3130.

• van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 2094–2100).

• Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural Networks, 21(4), 682–697.

• Kober, J., & Peters, J. (2008). Policy search for motor primitives in robotics. In Advances in Neural Information Processing Systems (pp. 849–856).

• Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3389–3396).

• Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Sim-to-real transfer of robotic control with dynamics randomization. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 8978–8985).

• Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334–1373.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.